HAROLD McGEE PDF

Title HAROLD McGEE
Author LENIN TIPAN
Pages 485
File Size 84.3 MB
File Type PDF
Total Downloads 48
Total Views 250

Summary

HAROLD McGEE LA COCINA Y LOS ALIMENTOS ENCICLOPEDIA DE LA CIENCIA Y LA ClJLTlJRA DE LA COMIDA Traducción de Juan Manuel Ihcas A mi jimúlia Título original: On Food and Cooking Primera edición: noviembre de 2007 Segunda edición: diciembre de 2007 Tercera edición: enero de 2008 © 1984, 2004, Harold Mc...


Description

HAROLD McGEE

LA COCINA Y LOS ALIMENTOS ENCICLOPEDIA DE LA CIENCIA Y LA ClJLTlJRA DE LA COMIDA

Traducción de

Juan Manuel Ihcas

A mi jimúlia

Título original: On Food and Cooking Primera edición: noviembre de 2007 Segunda edición: diciembre de 2007 Tercera edición: enero de 2008 © 1984, 2004, Harold McGee © 2007, Random House Mondadori, S. A. Ti·avessera de Gracia, 47-49. 08021 Barcelona © 2007, Juan Manuel lbeas, por la traducción © 2007, Andoni Luis Aduriz y Unai Ugalde, por el prólogo © 2004, Justin Grcene y Patricia Dorfman, por las ilustraciones; Ann B. McGee, por los grabados

Qti~dan prohibidos, dentro de los límites establecidos en la ley y bajo los apercibimientos legalmente previstos, la reproducción total o parcial de esta obra por cualquier medio o procedimiento, ya sea electrónico o mcCLCIMIFNTOo . . . . . . . . . . . . . . . . . . . .

lNTROIJUCCIÓN: COCINA Y CIENCIA,

XIII

1>, la bibliotcm es la collllel/a del estudioso. Grabado de la colcccf,)/1 de la Asociació11 [¡lfemllciolllll de fm;esl(~a­ ción sobre las Abejas.)

es cdici{Jn, y da, de un libro que publiqué en 1lJS4, hace veinte largos aí'íos. En 19S4, el aceite de colza, el ratón del ordenador y los discos compactos eran novechdes.Tambi('n lo era la idea de invitar a los cocineros a explorar las interioridades biológicas y químicas de los alimentos. Era una época en la que un libro como este necesitab:1 de verdad una introducción. Hace veinte ai1os, los mundos de la ciencia y la cocina estaban pulcramente clasificados. Existían las ciencias básicas -fisica, química y biología-, que profundizaban en la naturaleza de la materia y la vida. Estaba la ciencia de los alimentos, una ciencia aplicada que se ocupaba principalmente de comprender los materiales y procesos de la elaboración industrial. Y estaba el mundo de la cocina a pequd1a escala en hogares y restaurantes, oficios tradicionales que nun· ca habían atraído mucha atención científica. Tampoco es que la necesitaran. Los cocineros habían desarrollado su propio cuerpo de conocimientos prácticos durante miles de a!los, y disponían de abundantes recetas de confianza para trabajar. Cuando yo era joven me t1scinaban la química y la fisica, experimentaba con galvanoplastia, bobinas Tesla y telescopios, y fui a C:altech con la intención de estudiar astronomía. Hasta después de calllbiar de dirección y pasarme a la literatura inglesa -y empezar a cocinar-, no había oído hablar de la cienciJ alimentaria. Una noche de 1976 o 1977, durante una cena, un amigo de Nueva Orleáns se preguntó en voz

alta por Lls alubns eran un alunento tan problemútico, por qué CO!lH.T judías rojas con arroz tenía que costartc varias horas de incomodidad, a veces onbarazosa. ¡ lmt'resante pregunta! Pocos días despuf·s. trabajando en la biblioteca y sintiendo que necesitaba descansar de la poesía del siglo XIX, me acordé de ello y de la rcspucsc1 que había dado un al!ligo biólogo (azúcares indigeriblcs). Se me ocurrió hojear algunos libros sobre alimentos, Il\e dirigí a dicha sección y encontré estantes y más estantes llenos de extraí'ios títulos: R.ciJista de ciencia alimcrltaria, Ciencia m;Írola, Quí111im de los cereales ... Miré unos cuantos volúmenes y, emre páginas básicamente incompremibles, encontré pistas de las respuestas a otras preguntas que nunca se me habían ocurrido.¿ Por qué los huevos se solidifican cuando los cocinamos?¿ Por qué las frutas se ponen marrones cuando las cona m os? ¿Por qué la masa de pan cobra vida al amasarse, y por qué así se hace buen pan? ¿Qué clases de alubias son las más agresivas, y cómo puede domesticarlas un cocinero? fue muy divertido hacer y compartir aquellos pcquei\os descubrimientos, y empecé a pensar que muchas personas imeresadas en los alimentos podrían disfi·utar con ellos. Al final, encontré tiempo para sumergirme en la ciencia y la historia de la comida y escribir ()¡¡ Food o111/ Cookin,' se consideraba un defecto en lo:s tiempos, los consumidores estadounidenses ya están acostumbrados a él, y en muchas centrales lecheras se intensifica pasteurizando por encima de la temperatura mínima: lo más normal es a 77 °C. El tercer método para pasteurizar la leche es el de tc111pcrat1tm 11ltm alta (UHT, llltra-h(¡zh tcmpcmturc), que consiste en calentar la leche a 1:10-150 °C, o bien solo un instante o bien durante uno a tres se¡.;undos. El resultado es una le-· che que si se envasa en estrictas condiciones de esterilidad se puede almacenar durante meses sin refi·igeración. El tratamiento UHT más prolongado confiere a la leche un sabor a cocida y un color ligeramente pardo. La nata contiene menos lactosa y proteínas, y por eso su sabor y color resultan menos afectados. La leche esterilizada se ha calentado a 11 0121 °C durante 8-30 minutos. Es aun más oscura y de sabor más fi.1erte, y se mantiene indefiuidamente a temperatura ambiente.

quillas muy pequeúas, donde la turbulencia rompe los glóbulos de grasa en f!·agmentos más pequenos; su di[nlletro medio es de una a cuatro ulicra,. El súbito aumento del número de glóbulos ocasiona un aumento proporcional de su área superficial, y las mcmhr:mas origina-les de los glóbulos son insullcientcs para cu-brirla. La superficie desnuda de la grasa atrae partículas de que se adhleJ-en y crean una cubierta artificial un tercio de la caseína de ia leche acaba e u los glóbulos). Las par-tículas de caseína dau m:1s peso ;¡ ]o;; evitando que e interfieren con su aglomeración habitual; de este modo, la grasa queda unifórmemente dispersa en la leche. La leche siempre se pasteuriza justo antes o al mismo que la homogeneización, para evi tar que sus enzimas ataquen a los glóbulos de gras:1 momentáneamente desprmegidos, generando sabores rancios. La homogeneización afi:cta al sabor y la apariencia de la leche. Aunque la vuelve un poco más insípida -probablemente porque las moléculas del sabor quedan pegadas a las superficies de los nuevos glóbulos de grasa-, también la hace más resistente al desarrollo de muchos sabores desagradables. La leche homogeneizada produce una sensaciém más cremosa en la boca, gracias al aumento de la población de glóbulos de grasa (que se multiplica por ~0), y es más blauca porque los pigmentos carotenoides de la

grasa están dispersos en partículas más pequeiias y más numerosas.

leches desnataAlteración das y smnidesnatadas Una alteración nutricional de la leche ec. Ltn antigua como la lllisma industrÍ;t lechera: retirando la capa de uata se reduce sustancialmente el contenido de grasa de la leche IT>Lime. b desnatado se realiza más dicientcmcnte cen LniÍJgamlo pa1a dunlllar pdllc de luc. antes de la homogeneización. La leche entera tiene un 3,5')!(, de grasa; las semidesnatadas suelen tener entre un 2 y un 1%, y las desnatadas oscilan entre el O, 1 y el 0,5~;(•. Una práctica más reciente consiste en complementar la leche con varias sustancias. Casi todas las leches se refÍJerzan con las vitaminas liposolubles A y 1} !.as leches desnatadas tienen poco cuerpo y aspecto diluido, y se las refuerza con proteínas de leche desecadas, que pueden darles un sabor ligeramente raucio. La leche "aciLiófila» contiene Lactobaci!ltls acidoplti!us, una bacteria que metaboliza la lactosa convirtiéndola en ácido láctico, y que puede establecer su residencia en el intestino (p. 51). Más conveniente para los aficionados a la leche que no pueden digerir la lactosa es la leche tratada con la enzima digestiva lactasa, que descompone la lactosa en azúcares simples y asimilables.

LECHE EN POLVO EN ASIA EN EL SIGLO XIII

Homogeneización Si se deja reposar, la leche entera fresca se separa uaturalmente en dos fases: los glóbulos de grasa se juntan y ascieuden, formando la capa de nata y dejando abajo un;1 fase desprovista de grasa (p. 19). El tratamiento llamado lwllw.~cneízación se ideó eu Francia hacia 1900 para impedir la formación de nata y mantener la grasa de la leche uniformemente -homogéueamentc~ dispersa. Consiste en bombear leche caliente a alta presión a través de bo-

[Los ~jércitos tártaros! hacen también provisión de leche, espesada o secada hasta el estado de pasta dura, que preparan de la s1gmente manera. Hierven la leche y retiran la parte rica o cremosa que sube a lo alto, y la ponen en una vasija separada como mantequilla; porque mientras eso esté en la leche, esta no se pondrá dura. Entonces la leche se expone al sol hasta que se seca. !Cuando se va a usar] ponen un poco en UJ1a botelb,junro con tanta agua como se considere necesario. Con el movimiento al cabalgar, el contenido se agita violentamente y se forman unas gachas diluidas, con las que hacen la cena. MARCO

Poto, Viaics

F PRODUCTOS LÁCTEOS NO PERMENTADOS

Y PRODUCTOS LÁCTEOS

26

Almacenamiento La leche es un alimento muy perecedero. Hasta la leche pasteurizada de grado A contiene millones de bacterias en cada vaso, y se estropea rápidamente si no estC\ refrigerada. Congelarla es mala idea, porque altera los glóbulos de grasa y las partículas de proteína, que forman grumos y se separan cuando

Leches concentradas En muchas culturas, la leche se reducía tradicionalmente hirviéndola para que se consen·ara m:ís fácil de transportar. Según la el norteamericano Gail Borden reinventó la leche evaporada hacia 1H53. después de una dura travesía transatlántica que puso enfermas a las vacas del barco. Borden aüadió grandes cantidades de azúcar para evitar que esta leche concentrada se estropeara. La idea de esterilizar leche no azucarada ya enlatada se le ocurrió en 1H84 a John Meyenberg, cuya empresa suiza se fusionó con N estlé hacia el cambio de siglo. La leche en polvo no apareció hasta principios del siglo xx. En la actualidad, las leches concentradas se valoran porque se conservan durante meses y aportan la contribución característica de la leche a la textura y sabor de ciertos platos y recetas de confitería, pero sin el agua de la leche. La leche condensada o e1;aporada se hace calentando leche cruda a presión reducida (un vacío parcial), para cocerla entre 43 y 60 °C, hasta que

pierde aproximadamente la mitad de su agua. El resultado es un líquido cremoso de sabor suave, que se homogene1za y después se enlata y esteriliza. La cocción y la concentración de lactosa y proteínas producen un cierto pardeamiento que da a la leche evaporada su característico color tostado y su toque de caramelo. El pardeamiento continúa lentamente durante el almacenannento, y en las latas v1eps puede dar a un fluido oscuro, úcido y de mal sabor. Para hacer lcdH' condensada cmlulzada, pn-mcro se concentra la leche por evaporación y después se le aüade azúcar de mesa hasta alcanzar una concentración total de azúcar de aproximadamente el 55%. Los microbios no pueden vivir en esta presión osmótica, así que la esterilización es innecesaria. La alta concentración de azúcar hace que la lactosa de la leche cristalice, y esto se controla sembrando la leche de cristales de lactosa preformados, para que los cristales se mantengan pequeüos y no se noten en la lengua (a veces se encuentran cristales de lactosa grandes y arenosos, que se consideran un defecto de calidad). La leche condensada endulzada tiene un sabor más suave, menos «cocido», que la leche evaporada, un color más claro y la consistencia de un jarabe espeso. La leche en polvo o seca es el resultado de llevar la evaporación al extremo. La leche se pasteuriza a alta temperatura; después se elimina aproximadamente el 90% del agua por evaporación al

Las cifras son los porcent~es en peso de los principales componentes de la leche.

Evaporada Evaporada desnatada Condensada endulzada Seca, con toda la grasa Seca sin grasa Fresca

Proteínas

Grasas

7 8 8 26 36 3,4

8 0,3 9 27 1

3,7

Azúcares 10

11 55 38 52 4,8

Cocinar con leche Gran parte de la leche que usamos en la cocina desaparece en una mezcla -un batido o una masa, unas natillas o un pudín---·, cuyo comportanliento está determinado en gran medida por los otros ingredientes. La leche sirve fundamentalmente como fuente de humedad, pero también aporta sabor, cuerpo, azúcar que da color y sales que facilitan la coagulación de las proteínas. Cuando la leche misma es un ingrediente destacado -en cremas, salsas y patatas horneadas a la crema, o aíladida al chocolate caliente, al suele llamar la atención el que sus café o al proteínas se coagulen. La película que se forma

en la superficie de la leche esuldada, las cremas y las salsas es un complejo de caseína, calcio, proteínas del suero y glóbulos de grasa atrapados, y es consecuencia de la evaporación del agua en la superficie y de la concentración progresiva de proteínas en ese lugar. Se puede minimizar la formación de película cubriendo b sartén o cazuela, o batiendo para formar un puco de c:-.punw; alllho:-. mi-wdo:, n:dw Cll la evaporación. Mientras tanto, en el f(mdo de la

Lt

LculpcraLULl ~dta

y

dc~hidLlLtntc

transnnt1da por el tógón provoca una concentración similar de proteínas, que se pegan al metal y acaban por chamuscarse. J,a adhesión de proteínas al metal se puede reducir mojando el recipiente con agua antes de aíladir la leche. Por su parte, el chamuscado se reduce al mínimo usando un recipiente grande, de conduccifln uniforme, y una llama moderada; se podría evitar por completo hirviendo al bailo maría. aunque es más trab:Uoso. Entre el fondo de la cazuela y la superficie, partículas de otros ingredientes pueden formar grumos al ofi·ecer superficies a las que puedan adherirse las proteínas de la leche, aglomerándose. El ácido que contienen los jugos de todas las frutas, las verduras y el café, así como los taninos astringentes de las patatas, el café y el té, hacen que las proteínas de la leche sean especialmente propensas a la coagulación y el cuajo. Como las bacterias agrían lentamente la le-

LECHE CUAJADA INTENCIONADAMENTE

COMPOSICIÓN DE LAS LECHES CONCENTRADAS

Tipo de leche

vacío y el 10% restante en un secador de chorro (la leche concentrada se pulveriza en una címara de aire caliente, donde las gotitas de leche se secan r:ípidamcntc, quedando minúsculas partículas de sólidos de la leche). Algunas leches se secan también por congelación. Al haberse eliminado casi toda el agua, la leche en polvo está a salvo de ataques microbianos. La mayoría de las leches cu polvo \e' hacen a de leche, dc.\natadas, porque L1 grasa ele la leche se pone ranCla 1 cudndu :"Jl' cxpouc d L~ :,,tk'~ concentradas de la leche y al oxígeno atmosfc·rico, y porque tiende a recubrir las partículas de proteína, dificultando la posterior mezcla con agua. La leche en polvo se conserva durante varios meses en un ambiente seco y fi·esco.

Minerales 1,4 1,5 2 6 8 1

Agua 73 79 27 2,5 3 87

P~ra la mayoría de los cocineros de esta época, la leche cuajada anuncia una crisis: el plato ha perdido su suav1dad. Pero hay muchos platos en los que el cocinero provoca intencionadamente la coagulación de las proteínas de la leche, precisamente por el interés textura! que esto genera. El sylla/Ju/J inglés se hacía a veces echando un chorro de leche caliente recién salida de la ubre en vino o zumo ácidos, y en el siglo XVII, el escritor francés Pi erre de Lune describió una leche reducida ; es deor, el volumen tina] del helado es mitad mezcla y mitad aire. Cuanto lllt'!lor sea el l''>pon¡anncnto, mús denso es el helado.

cristales de /Jielo

1le/culo de 1111111: uua cspu11t!l _,cntísálíd,t. Ln el proceso de rWI}!.elacián de la 11/c~c/a se.fi>nllall rríst11lcs de //Íc/o -111asas sólidas de > a partir del suero. Otra curiosa leche fermentada, poco conocida en Occidente, es el krfir, muy popular en el Cáucaso,donde puede que tenga su origcn.A diferencia de otras leches fermentadas, en las que los microb,!Os fermentadores están dis~e:·sos unif(Jrmemcnte, el kéfir está formado por grandes y complejas partlculas llamadas granos de keflr, que alojan a más de una docena de microbios, incluyendo lactobactlos, lactococos, levaduras y bacterias del vinagre. Rsta asociación simbiótica crece a temperatura amlnente, dando lugar a un producto agrio, ligeramente alcohólico, efervescente y cremoso.

del agua. Los nutritivos cuajos de proteína y grasa se }¡,¡ccn más duraderos ailadié·ndoles :ícido y sal, que evitan el crecimiento de microbios de la putrebcción. Y se les da más sabor mediante la actividad controlada de enzimas microbianas, que rompen las molt·culas de proteína y de grasa en pequeüos fi·agmcntos de inten;,o sahur. Probablemente, la evolución del queso comeuz(J hace unos 5.000 cu:llldo los pobladores de las zonas cálidas de Asia central y Oriente l'róxmJO descubneron que pudíall conservar la leche cuapda y agriada de manera natural escurriendo el suero acuoso y salaudo las cua_pdas concemradas. En algún momento des cubrieron también que la textura de la cuajada se hacía más flexible y más consistente si el cu;Uado tenía lugar en un estómago de animal o con trozos de estómago en el mismo recipiente. Aquellos primeros quesos debían de parecerse al moderno feta curado en salmuera, que sigue siendo un importante tipo de queso en el Mediterráneo oriental y los Ualcanes. La evidencia de elaboración de queso más antigua conocida hasta ahora es un residuo encontrado en una vasija egipcia que data aproximadamente de 2300 a.C.

El ingrediente esencial de los diversos quesos: el tiempo Esta técnica básica de cuajar la leche con la ayuda del extracto del estómago que ahora se llama cuajo, para después escurrir y salar las cuajadas, se fue difun-

diendo hacia el oeste y el norte, penetrando en Europa. Aquí, la gente fue descubriendo poco a poco que en estas regiones más trías las cuajadas se conservaban bastante bien con tratamientos m5s suaves: una acidificación menos intensa y menos sal o salmuera. Este fue el descubrimiento que abrió la puerta a la gran de los quesos, porque introdujo un quinto ingrediente, además de la leche, las h;1ctnias. el v la sal: el tiempo. En presencia de sal y con una acidez moderada, el c¡uc:-.o en un Jncdio para el continuo crecimiento y actividad de diversos microbios y sus enzimas. En cierto sentido, el queso cobró vida. Se hizo capaz de experimentar un prolongado desarrollo y cambio; entró en el mundo cíclico de nacimiento, maduración y declive. ¿Cuándo nacieron los quesos modernos? No lo sabemos con certeza, pero fue mucho antes de los tiempos romanos. En su J,(es rustica (La labranza), aproximadamente de 65 d. C., Columela describe extensamente el método básico de elaboración del queso. Se cu;Uaba la leche con cu~~jo de cordero o con diversos fluidos vegetales. Se prensaba para escurrir el suero, se salaba la cuajada y se ponía el queso fresco en un sitio fresco para que se endureciera. La salazón y el endurecimiento se repetían, y después el queso maduro se lavaba, se secaba y se empaquetaba para almacenarlo y transportarlo. Plinio, que también escribió en el siglo I, decía que Roma apreciaba de manera especial los quesos de sus

LOS QUESOS COMO ARTEFACTOS

Detrás de cada queso hay un pasto de diferentes hierbas bajo un ciclo diferente: prados con incrustaciones de sal que las mareas de Nonnandía depositan cada tarde; prados perfumados con aromas de la soleada y ventosa Provenza; hay diferentes rebai'íos, con sus refugios y desplazamientos por el campo, y métodos secretos transmitidos durante siglos. Esta tienda es un museo: el sel'íor Palomar, al visitarla, siente, lo mismo que en el Louvre, que detrás de cada objeto exhibido está la presencia de la civilización que le dio forma y que adoptó su forma de él. !TALO CAl .VINO,

Palomar, 1983

provincias más remotas, sobre todo Nimes, en el sur de Francia, y tamhi(·n los Alpes franceses y dálmatas.

El desarrollo de la diversidad Durante los diez o doce siglos posteriores al dominio de Roma, el arte de elaborar queso progresó en los estados feudales y en los monasterios, que se esfórzab:m po...


Similar Free PDFs