problemas 2 PDF

Title problemas 2
Author C. Bravo Arredondo
Pages 14
File Size 746.3 KB
File Type PDF
Total Downloads 84
Total Views 331

Summary

201 CAPÍTULO 4 La cantidad de energía necesaria para elevar en un grado la donde R es la constante del gas. La relación de calores espe- temperatura de una masa unitaria de una sustancia se llama cíficos k se define como calor específico a volumen constante cv para un proceso a cp volumen constante ...


Description

201

CAPÍTULO 4

La cantidad de energía necesaria para elevar en un grado la temperatura de una masa unitaria de una sustancia se llama calor específico a volumen constante cv para un proceso a volumen constante y calor específico a presión constante cp para otro a presión constante. Se define como cv 5 a

0u b Êy 0T v

cp 5 a

0h b 0T p

Para gases ideales u, h, cv y cp son funciones sólo de la temperatura. El Du y Dh de gases ideales se expresa como ¢u 5 u 2 2 u 1 5

#

2

#

2

¢h 5 h2 2 h1 5

cv 1T 2 dT > cv,prom 1T2 2 T12

Ê

1

1

cp 1T2 dT > cp,prom 1T2 2 T1 2

Ê

Para gases ideales, cv y cp se relacionan mediante cp 5 cv 1 R

donde R es la constante del gas. La relación de calores específicos k se define como cp k cv Para sustancias incompresibles (líquidos y sólidos), ambos calores específicos, a presión y volumen constantes, son idénticos y se denotan mediante c: cp

cv

c

Las expresiones para Du y Dh de sustancias incompresibles son ¢u 5

#

1

ah

2  

c 1T 2 dT > cprom 1T2 2 T1 2  

au

vaP

Observe que la relación anterior se limita a procesos a presión constante de sistemas cerrados y no es válida para procesos donde cambia la presión.

REFERENCIAS Y LECTURAS RECOMENDADAS 1. ASHRAE, Handbook of Fundamentals, versión SI, Atlanta, GA, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 1993.

2. ASHRAE, Handbook of Refrigeration, versión SI, Atlanta, GA, American Society of Heating, Refrigerating, and AirConditioning Engineers, Inc., 1994.

PROBLEMAS* Trabajo de frontera móvil

4 -2C Un gas ideal se expande de un estado especificado hasta un volumen final fijo dos veces, primero a presión constante y después a temperatura constante. ¿Para cuál caso el trabajo efectuado es mayor?

P, psia

4 -1C ¿Es siempre cero el trabajo de la frontera asociado con los sistemas de volumen constante?

15

1

3.3 2 V, pies 3

FIGURA P4-5E 4-6 Calcule el trabajo total, en kJ, producido por el proceso isotérmico de la figura P4-6 cuando el sistema consiste de 3 kg de oxígeno. 2

600 P, kPa

4-5E Calcule el trabajo total, en Btu, para el proceso 1-3 que se muestra en la figura P4-5E.

* Los problemas marcados con “C” son preguntas de concepto, y se exhorta a los estudiantes a contestarlas todas. Los problemas marcados con una “E” están en unidades inglesas, y quienes utilizan unidades SI pueden ignorarlos. Los problemas con un ícono son de comprensión y se recomienda emplear un software como EES para resolverlos.

2

1

4 -3C Demuestre que 1 kPa · m3 5 1 kJ. 4-4 El volumen de 1 kg de helio, en un dispositivo de cilindro-émbolo, es 7 m3, en un principio. A continuación, el helio se comprime hasta 3 m3, manteniendo constante su presión en 150 kPa. Determine las temperaturas inicial y final del helio, así como el trabajo requerido para comprimirlo, en kJ.

3

300

T 1

200

0.2

v, m3/kg

FIGURA P4-6

202

ANÁLISIS DE ENERGÍA DE SISTEMAS CERRADOS

4 -7 Un dispositivo de cilindro-émbolo contiene, al principio, 0.07 m3 de gas de nitrógeno a 130 kPa y 120 °C. Entonces, el nitrógeno se expande en un proceso politrópico hasta un estado de 100 kPa y 100 °C. Determine el trabajo de la frontera efectuado durante este proceso. 4 -8 Un dispositivo de cilindro-émbolo, con un grupo de topes, contiene inicialmente 0.3 kg de vapor de agua a 1.0 MPa y 400 °C. El lugar de los topes corresponde al 60 por ciento del volumen inicial. Entonces, se enfría el vapor de agua. Determine el trabajo de compresión, si el estado final es a) 1.0 MPa y 250 °C, y b) 500 kPa. c) También determine la temperatura del estado final en el inciso b).

Vapor de agua 0.3 kg 1 MPa 400 °C

Q

FIGURA P4-8

Regrese al problema 4-11. Use el programa EES (u otro) para investigar el efecto de la presión sobre el trabajo efectuado. Haga variar la presión de 200 a 1 200 kPa. Trace la gráfica del trabajo efectuado en función de la presión, y describa los resultados. Explique por qué la gráfica no es lineal. También trace la gráfica del proceso descrito en el problema 4-12, en el diagrama P-V.

4-12

4-13 Se expande isotérmicamente 1 m3 de agua líquida saturada a 200 °C en un sistema cerrado hasta que su calidad llega a 80 por ciento. Determine el trabajo total producido por esta expansión, en kJ. 4-14 Una masa de 2.4 kg de aire a 150 kPa y 12 °C está dentro de un dispositivo de cilindro-émbolo hermético y sin fricción. A continuación se comprime el aire hasta una presión final de 600 kPa. Durante el proceso, se retira calor del aire de tal modo que permanece constante la temperatura en el interior del cilindro. Calcule el trabajo consumido durante este proceso. Respuesta: 272 kJ 4-15 Determine el trabajo de frontera realizado por un gas durante un proceso de expansión si los valores de presión y volumen se miden en diversos estados como 300 kPa, 1 L; 290 kPa, 1.1 L; 270 kPa, 1.2 L; 250 kPa, 1.4 L; 220 kPa, 1.7 L, y 200 kPa, 2 L. Durante unos procesos reales de expansión y compresión en dispositivos de cilindro-émbolo, se ha observado que los gases satisfacen la relación PV n 5 C, donde n y C son constantes. Calcule el trabajo efectuado cuando un gas se expande de 350 kPa y 0.03 m3, hasta un volumen final de 0.2 m3, para el caso en que n 5 1.5. 4-16

4 -9 Un dispositivo de cilindro-émbolo contiene en un principio 0.07 m3 de gas de nitrógeno a 130 kPa y 180 °C. A continuación el nitrógeno se expande hasta alcanzar una presión de 80 kPa, en un proceso politrópico, con un exponente politrópico cuyo valor es igual a la relación de calores específicos. Ésta es la llamada expansión isentrópica. Determine la temperatura final y el trabajo de la frontera durante este proceso. 4 -10 Se calienta una masa de 5 kg de vapor de agua saturado a 300 kPa, a presión constante, hasta que la temperatura llega a 200 °C. Calcule el trabajo efectuado por el vapor de agua durante este proceso. Respuesta: 165.9 kJ 4-11 Un dispositivo de cilindro-émbolo sin fricción contiene al principio 50 L de líquido saturado de refrigerante 134a. El émbolo tiene libre movimiento, y su masa es tal que mantiene una presión de 500 kPa sobre el refrigerante. A continuación se calienta el refrigerante hasta que su temperatura sube a 70 °C. Calcule el trabajo efectuado durante este proceso.

Regrese al problema 4-16. Use el programa EES (u otro) para graficar el proceso descrito en el problema, en un diagrama P-V, e investigue el efecto del exponente politrópico n sobre el trabajo de la frontera. Haga variar el exponente politrópico, de 1.1 a 1.6. Trace la gráfica del trabajo de la frontera en función del exponente politrópico, y describa los resultados.

4-17

4-18 Un dispositivo de cilindro-émbolo sin fricción contiene 2 kg de nitrógeno a 100 kPa y 300 K. El nitrógeno se comprime entonces lentamente, siguiendo la relación PV 1.4 5 constante, hasta que llega a una temperatura final de 360 K. Calcule el trabajo consumido durante este proceso. Respuesta: 89 kJ

Respuesta: 1.600 kJ

N2 R-134a

PV1.4 = const.

P = const.

FIGURA P4-18 FIGURA P4-11

203

CAPÍTULO 4

La ecuación de estado de un gas es v(P 1 10/ v 2) 5 RuT, donde las unidades respectivas de v y P son m3/kmol y kPa. Entonces, 0.2 kmol de este gas se expanden en un proceso de cuasiequilibrio, de 2 a 4 m3 a una temperatura constante de 300 K. Determine a) la unidad de la cantidad 10 en la ecuación, y b) el trabajo efectuado durante este proceso de expansión isotérmica. 4 -19

Resorte

Regrese al problema 4-19. Con la función de integración en el programa EES, calcule el trabajo efectuado, y compare su resultado con el “calculado a mano” del problema 4-19. Trace la gráfica del proceso descrito en el problema en las coordenadas P-v.

4 -20

4 -21 El dióxido de carbono contenido en un dispositivo de cilindro-émbolo se comprime de 0.3 a 0.1 m3. Durante el proceso, la presión y el volumen se relacionan con P 5 av22, donde a 5 8 kPa · m6. Calcule el trabajo efectuado sobre el dióxido de carbono durante este proceso. Respuesta: 53.3 kJ 4 -22E Durante un proceso de expansión, la presión de un gas cambia de 15 a 100 psia, siguiendo la relación P 5 aV 1 b, donde a 5 5 psia/pie3 y b es una constante. Si el volumen inicial del gas es 7 pies3, calcule el trabajo efectuado durante el proceso. Respuesta: 181 Btu 4 -23 Un dispositivo de cilindro-émbolo contiene en un principio 0.25 kg de gas de nitrógeno a 130 kPa y 180 °C. Ahora se expande isotérmicamente el nitrógeno, hasta una presión de 80 kPa. Determine el trabajo de la frontera, efectuado durante este proceso. Respuesta: 16.3 kJ

Fluido

FIGURA P4-25 4-26 1.5 kg de agua a 1 MPa tiene inicialmente 30 por ciento de calidad, y ocupa un dispositivo de cilindro-émbolo con carga de resorte. Entonces se enfría ese dispositivo, hasta que el agua es líquido saturado a 100 °C. Calcule el trabajo total producido durante este proceso, en kJ. 4-27 Un gas ideal experimenta dos procesos en un dispositivo de cilindro-émbolo como sigue: 1-2 Compresión politrópica de T1 y P1 con exponente politrópico n y una relación de compresión de r = V1/V2. 2-3 Expansión a presión constante a P3 = P2 hasta que V3 = V1. a) Haga un esquema de los procesos en un solo diagrama P-v. b) Obtenga una expresión para la relación del trabajo de compresión al de expansión como función de n y r. c) Encuentre el valor de esta relación para valores de n = 1.4 y r = 6.

N2 130 kPa 120 °C

Respuestas: b )

1

n

1 11 r

r1 1

n

2 , c) 0.256

Análisis de energía de sistemas cerrados FIGURA P4-23

4-28E Complete cada renglón de la siguiente tabla, con base en el principio de conservación de la energía para un sistema cerrado.

4 -24 Un dispositivo de cilindro-émbolo contiene 0.15 kg de aire, en un principio a 2 MPa y 350 °C. Primero se expande el aire isotérmicamente hasta 500 kPa, y después se comprime en un proceso politrópico con un exponente politrópico de 1.2, hasta la presión inicial; por último, se comprime a presión constante hasta llegar al estado inicial. Determine el trabajo de la frontera para cada proceso, y el trabajo neto del ciclo.

Qentrada Btu

Wsalida Btu

E1 Btu

E2 Btu

m lbm

e2 – e1 Btu/lbm

350 350 — 2500 —

— 2130 2260 — 250

1.020 0550 0600 01 400 1 000

860 — — 900 —

3 5 2 7 3

— — 150 — 2200

4 -25 1 kg de agua que al principio está a 90 °C, con 10 por ciento de calidad, ocupa un dispositivo de cilindro-émbolo con carga de resorte, como el de la figura P4-25. Entonces se calienta ese dispositivo hasta que la presión sube hasta 800 kPa, y la temperatura es 250 °C. Calcule el trabajo total producido durante este proceso, en kJ. Respuesta: 24.5 kJ

4-29E Un sistema cerrado como el que se muestra en la figura P4-29E se opera de manera adiabática. Primero, este sistema realiza 15 000 lb . pie de trabajo. Luego se aplica trabajo al dispositivo de agitación para elevar la energía interna del fluido en 10.28 Btu. Calcule el aumento neto en la energía interna de este sistema.

204

ANÁLISIS DE ENERGÍA DE SISTEMAS CERRADOS

Agua 200 8C Vapor saturado

Calor

FIGURA P4-34 FIGURA P4-29E 4 -30E Un sistema cerrado se somete a un proceso en el que no hay cambio de energía interna. Durante este proceso, el sistema produce 1.1 3 106 lb . pie de trabajo. Calcule la transferencia de calor para este proceso, en Btu.

4-35 Un recipiente rígido de 10 L contiene inicialmente una mezcla de agua líquida y vapor a 100 °C con calidad de 12.3 por ciento. Luego se calienta la mezcla hasta que su temperatura es de 150 °C. Calcule la transferencia de calor necesaria para este proceso. Respuesta: 46.9 kJ.

4 -31 Un recipiente rígido con un agitador contiene 1.5 kg de aceite para motor. Determine la tasa de aumento en la energía específica, cuando se transfiere calor al aceite, a la tasa de 1 W, y se aplica 1.5 W de potencia al agitador. 4 -32 Un recipiente rígido bien aislado contiene 2 kg de un vapor húmedo de agua, a 150 kPa. En un principio, tres cuartos de la masa están en la fase líquida. Una resistencia eléctrica colocada en el recipiente se conecta con un suministro de voltaje de 110 V, y pasa una corriente de 8 A por la resistencia, al cerrar el interruptor. Determine cuánto tiempo se necesitará para evaporar todo el líquido en el recipiente. También muestre el proceso en un diagrama T-V con respecto a líneas de saturación.

H2O

V = constante

We

FIGURA P4-32 Regrese al problema 4-32. Use el programa EES (u otro) para investigar el efecto de la masa inicial del agua sobre el tiempo requerido para evaporar por completo el líquido. Haga variar la masa inicial de 1 a 10 kg. Trace el tiempo de evaporación en función de la masa inicial, y describa los resultados.

Agua

FIGURA P4-35 4-36 Una masa fija de vapor saturado de agua a 300 kPa se enfría isotérmicamente hasta que se convierte en un líquido saturado. Calcule la cantidad de calor rechazado durante este proceso, en kJ/kg. 4-37 Se condensa vapor saturado de agua en un sistema cerrado, enfriándolo a presión constante hasta un líquido saturado a 40 kPa. Determine la transferencia de calor y el trabajo realizado durante este proceso, en kJ/kg. 4-38 Un dispositivo aislado de cilindro-émbolo contiene 5 L de agua líquida saturada a una presión constante de 175 kPa. Una rueda de paletas agita el agua, mientras que pasa una corriente de 8 A durante 45 min, por una resistencia colocada en el agua. Si se evapora la mitad del líquido durante este proceso a presión constante, y el trabajo de la rueda de paletas es 400 kJ, determine el voltaje de suministro. También, muestre el proceso en un diagrama P-V con respecto a líneas de saturación. Respuesta: 224 V

4 -33

4 -34 Se condensa isotérmicamente vapor saturado a 200 °C hasta líquido saturado, en un dispositivo de cilindro-émbolo. Calcule el calor transferido y el trabajo efectuado durante este proceso, en kJ/kg. Respuestas: 1 940 kJ/kg, 196 kJ/kg

H2O P = constante Wflecha

We

FIGURA P4-38

205

CAPÍTULO 4

Un dispositivo de cilindro-émbolo contiene inicialmente vapor de agua a 200 kPa, 200 °C y 0.4 m3. En este estado, un resorte lineal (F ~ x) toca el émbolo, pero no ejerce fuerza sobre él. Entonces, se transfiere calor lentamente al vapor de agua, haciendo que aumenten su presión y volumen, hasta 250 kPa y 0.6 m3, respectivamente. Represente al proceso en un diagrama P-v con respecto a líneas de saturación, y determine a) la temperatura final, b) el trabajo efectuado por el vapor de agua y c) el calor total transferido. 4-39

inicial de 2 m3. Entonces se calienta el vapor de agua hasta que su volumen es 5 m3 y su presión es 225 kPa. Calcule el calor transferido al vapor de agua, y el trabajo producido por el mismo, durante este proceso.

Respuestas: a) 606 °C, b) 45 kJ, c) 288 kJ

Resorte

Vapor de agua

FIGURA P4-42 4-43 En un dispositivo de cilindro-émbolo con carga de resorte hay refrigerante 134a, a 600 kPa y 150 °C, con un volumen inicial de 0.3 m3. Entonces se enfría el refrigerante, hasta que su temperatura es 230 °C, y su volumen es 0.1 m3. Determine el calor transferido al refrigerante, y el trabajo producido por él, durante este proceso. Respuestas: 1 849 kJ

FIGURA P4-39 Regrese al problema 4-39. Use el programa EES (u otro similar) para investigar el efecto de la temperatura inicial del vapor de agua sobre la temperatura final, el trabajo efectuado y el calor total transferido. Haga variar la temperatura inicial de 150 a 250 °C. Trace los resultados finales en función de la temperatura inicial y describa esos resultados. 4 -40

4-41 Un radiador eléctrico con 30 L de aceite se coloca en un recinto de 50 m3. Tanto el recinto como el aceite del radiador están a 10 °C en un principio. El radiador tiene una potencia nominal de 1.8 kW, y se enciende. Al mismo tiempo, se pierde calor del recinto a una tasa promedio de 0.35 kJ/s. Después de algún tiempo, se mide la temperatura promedio y resulta 20 °C, para el aire en el recinto, y 50 °C para el aceite en el radiador. Suponiendo que la densidad y el calor específico del aceite sean 950 kg/m3 y 2.2 kJ/kg · °C, respectivamente, determine cuánto tiempo se mantuvo encendido el calentador. Suponga que el recinto está bien hermetizado, para que no haya fugas de aire.

10°C

(calor rechazado por el refrigerante), 68.4 kJ (trabajo efectuado sobre el refrigerante)

4-44E Se condensa vapor saturado de R-134a a 100 °F, a presión constante, hasta líquido saturado, en un sistema cerrado de cilindro-émbolo. Calcule el calor transferido y el trabajo efectuado durante este proceso, en Btu/lbm. 4-45 En un dispositivo de cilindro-émbolo con carga constante, bien aislado, hay 0.8 kg de R-134a líquido saturado, a una temperatura inicial de 25 °C. Este dispositivo contiene una resistencia eléctrica, como se ve en la figura P4-45, a la cual se le aplican 10 volts para hacer pasar una corriente de 2 amperes por ella. Determine el tiempo que se necesita para que el refrigerante se convierta en vapor saturado, y la temperatura final del mismo.

Recinto Q

Radiador

DV

FIGURA P4-45 FIGURA P4-41 4-42 En un dispositivo de cilindro-émbolo con carga de resorte está contenido vapor de agua a 75 kPa y 8 por ciento de calidad, como se ve en la figura P4-42, con un volumen

4-46 Dos recipientes, el recipiente A y el recipiente B, están separados por una división. En un principio, el tanque A contiene 2 kg de vapor de agua a 1 MPa y 300 °C, mientras que el recipiente B contiene 3 kg de vapor húmedo de agua, a 150 °C, con 50 por ciento de fracción de masa de vapor. Entonces se quita la división, y se deja mezclar los dos lados, hasta que

206

ANÁLISIS DE ENERGÍA DE SISTEMAS CERRADOS

se establece el equilibrio mecánico y térmico. Si la presión del estado final es 300 kPa, determine a) la temperatura y la calidad del vapor (si es un vapor húmedo) en el estado final, y b) la cantidad de calor perdida de los recipientes.

Recipiente A 2 kg 1 MPa 300 °C

Recipiente B 3 kg 150 °C x = 0.5

Q

FIGURA P4-46 Calores específicos, Du y Dh de gases ideales 4 -47C En la relación Du 5 mcv DT, ¿cuál es la unidad correcta de cv, kJ/kg · °C o kJ/kg · K? 4 -48C La relación Du 5 mcv,promDT ¿está restringida a procesos de volumen constante, o se puede usar en cualquier proceso de un gas ideal? 4 -49C La relación Dh 5 mcp,promDT ¿está restringida a procesos de presión constante, o se puede usar en cualquier proceso de un gas ideal?

4-58 Calcule el cambio en la entalpía de argón, en kJ/kg, cuando se enfría de 100 a 25 °C. Si el neón hubiera pasado por el mismo cambio de temperatura ¿sería diferente su cambio de entalpía? 4-59E Calcule el cambio de entalpía del oxígeno Dh, en Btu/lbm, cuando se calienta de 800 a 1 500 R, usando a) la ecuación empírica de calor específico en función de la temperatura (tabla A-2Ec), b) el valor de cp a la temperatura pro...


Similar Free PDFs