Topicos de Calculo III - Maximo Mitacc Meza - FL - Bajo PDF

Title Topicos de Calculo III - Maximo Mitacc Meza - FL - Bajo
Author Will Ortega Miguel
Pages 222
File Size 29.4 MB
File Type PDF
Total Downloads 629
Total Views 874

Summary

MÁXIMO MITACC MEZA W W W .FREELIBROS.COM ▲ QUINTA EDICIÓN PRÓLOGO CÁLCULO III Con la experiencia obtenida en las ediciones previas; Cálculo III, sale totalmente aumentado, corregido y con una nueva diagramación. QUINTA EDICIÓN Cálculo III, ha sido escrito como texto para un curso de tercer semestre,...


Description

Accelerat ing t he world's research.

Topicos de Calculo III - Maximo Mitacc Meza - FL - Bajo Will Ortega Miguel

Related papers

Download a PDF Pack of t he best relat ed papers 

Calculo III - Maximo Mit acc Meza - FL - Bajo Fabricio Padilla

MÁXIMO MITACC MEZA iBraYan SD Calculo III, 5t a Edición Maximo Mit acc FREELIBROS.ORG Alan Hinost roza

MÁXIMO MITACC MEZA

W W W .FREELIBROS.COM ▲

QUINTA EDICIÓN

PRÓLOGO

CÁLCULO III QUINTA EDICIÓN

Con la experiencia obtenida en las ediciones previas; Cálculo III, sale totalmente aumentado, corregido y con una nueva diagramación. Cálculo III, ha sido escrito como texto para un curso de tercer semestre, a nivel universitario, cuyo contenido se adecúa a los planes de estudio de las carreras: Matemática, Física, Ingeniería, Química, Economía, etc.

Ninguna parte de este libro puede ser reproducida, archivada o transmitida en forma alguna o mediante algún sistema, ya sea electrónico, mecánico, de fotoreproducción, de almacenamiento en memoria o cualquier otro, sin el previo y expreso permiso por escrito de Máximo Mitacc Meza.

Impreso en el Perú

El objetivo principal de ésta obra es brindar al lector el mejor entendimiento y comprensión profunda de los temas de Cálculo Diferencial e Integral de funciones de varias variables con valor real. Printed in Perú

Impresión, diagramación y composición en los Talleres gráficos de Editorial THALES S.R.L.

Editorial THALES S.R.L Los Tucanes 241 Santa Anita Lima - Perú Telf. 362-1032 RUC 20251114782

I slc? libro se terminó de imprimir en

Junio del 2011

Las principales características de Cálculo III son: la forma clara y sencilla pero rigurosa de exponer la teoría y la gran cantidad de ejemplos prácticos, asi como también un gran número de gráficos, los cuales permiten una mejor comprensión de los temas expuestos.

El estudiante y el profesor que está vinculado con el quehacer de la matemática, encontrará en este libro una gran ayuda para las evaluaciones y en la preparación de clases respectivamente. Cálculo III, consta de siete capítulos; en el capítulo 1 se estudia a las funciones vectoriales de una variable real. El capítulo 2 está dedicado al estudio de las funciones de varias variables con valor real, poniendo énfasis en el desarrollo de los temas de Límites y continuidad. En los capítulos 3 y 4 se hace el estudio de las derivadas parciales de funciones de varias variables y sus aplicaciones en la solución de problemas de máximos y mínimos. Se presenta también para ello el método de los “Multiplicadores de Lagrange” . El capítulo 5 está dedicado al estudio de la integral doble y la integral triple de una función de dos y tres variables respectivamente, junto con sus aplicaciones, que consiste en el cálculo de áreas, volúmenes y centros de masa. Para facilitar el cálculo de éstas integrales, usamos el Jacobiano de una transformación. En el capítulo 6 se estudia a las integrales de línea y de superficie, con aplicaciones a la física. También se desarrolla aplicaciones del Teorema de Creen en el cual se ve una relación importante entre la integral doble con la integral de línea.

INDICE

Finalmente el capítulo 7 está dedicado al estudio de sucesiones y series de números reales.

CAPITULO 1: FUNCIONES VECTORIALES 1.1

En cada capítulo, se presentan ejemplos completamente desarrollados y ejemplos en los cuales el estudiante deberá efectuar a modo de ejercicio los cálculos de los pasos intermedios. También se propone una gran cantidad de ejercicios, la mayoría de ellos con sus respectivas respuestas, para que el estudiante verifique sus resultados. En esta quinta edición se ha hecho una revisión meticulosa del texto y correcciones de algunas fallas relacionadas al texto y a las gráficas. Quiero expresar mi agradecimiento a los lectores por la acogida que brindan a esta presente obra. Así mismo, expreso mi profundo agradecimiento a todas aquellas personas que directa o indirectamente contribuyeron a la realización de este obra, en especial a mi sobrina Consuelo Meza Lagos, quién dedicó su valioso tiempo para mejorar significativamente la redacción del contenido del texto.

El autor

Funciones Vectoriales de una variable real

1

Operaciones con funciones vectoriales..................................

5

1.2 Límite de una función vectorial Propiedades operacionales de límite de funciones vectoriales 1.3 Continuidad de una función vectorial Propiedades.............................................................................. 1.4 Derivada de una función vectorial Interpretación geométrica de la derivada de una función vectorial Reglas de derivación................................................................... 1.5 Integración de funciones vectoriales Propiedades de la integral definida.......................................... 1.6 Curvas regulares Longitud de una curva regular....................................................... 1.7 Vectores unitarios: Tangente, normal, principal y binormal Planos fundamentales generados por el triedro intrínseco 1.8 Curvatura y torsión de una curva Curvatura.................................................................................. Radio de curvatura.................................................................. Torsión................................................................................... •• Componente normal y tangencial de la aceleración.............

8 9 10

11

13 13 17 24 25 29 32 38 40 45 47 50 54 58

CAPITULO 2: FUNCIONES DE VARIAS VARIABLES LÍMITES Y CONTINUIDAD Funciones de varias variables

67

Curvas de nivel.......................................................................

71 72

2.2

Superficies de n iv el............................................................... Conjuntos abiertos y cerrados

2.3

Límite de una función de varias variables

83

Propiedades de los límites...................................................... Regla de dos trayectorias para calcular límites....................

85

Continuidad de funciones de varias variables

92

Propiedades de continuidad....................................................

94

2.1

2.4

80

86

Área de una región plana............................................................

CAPITULO 3: DERIVADAS PARCIALES 3.1

Derivada parcial de una función de varias variables

99

5.3 Integrales dobles mediante coordenadas polares Integrales iteradas en coordenadas polares..............................

Interpretación geométrica de las derivadas parciales de una función de dos variables.......................................................

102

Plano tangente y recta normal a una superficie..................

104

Interpretación de las derivadas parciales como razón de cambio 3.2 Derivadas parciales de orden superior

107

5.4 Jacobiano de una función de n variables Cambio de variables para integrales dobles............................ 5.5

Aplicaciones de la integral doble. Centro de masa de una lámina Momentos de inercia de una lámina.........................................

117

Área de una superficie................................................................

3.3 Derivada direccional y gradiente de una función de varias variables 122

5.7 Integrales triples

235 242 243 246 248 260 264 271 279

Derivada direccional de una función de varias variables....

124

Interpretación geométrica de la derivada direccional...........

124

Funciones integrables.................................................................

280

Propiedades de la derivada direccional..................................

127

Cálculo de integrales triples mediante integrales iteradas.....

281

3.4

Plano tangente y recta normal a una superficie

140

Propiedades fundamentales de la integral triple......................

282

3.5

Incremento y diferencial de una función de varias variables

148

Volumen de un sólido mediante integrales triples..................

286

Propagación de errores.............................................................

153

Cambio de variables en integrales triples.................................

288

3.6

Regla de la cadena para una función de varias variables

163

Integrales triples en coordenadas cilindricas............................

289

3.7

Derivación implícita

173

Integrales triples en coordenadas esféricas...............................

290

Centro de masa y momentos de inercia de un sólido................

300

CAPITULO 4: APLICACIONES DE DERIVADAS PARCIALES 4.1

Máximos y mínimos

183

Matriz Hessiana de una función de varias variables...........

187

CAPITULO 6: INTEGRAL DE LÍNEA Y DE SUPERFICIE 6.1

Integral de línea

309

Criterio de las segundas derivadas parciales para calcular los

Integral de línea de primera especie....................... ................

309

extremos relativos...................................................................

Propiedades de la integral de línea.............................................

312

189

Campos vectoriales................................................................315

Valores máximo y mínimo absolutos de una función de 4.2

varias variables.........................................................................

197

Extremos condicionados

204

Método de multiplicadores de Lagrange..................................

205

Integral de línea de segunda especie......................................... Independencia de trayectoria en integralesde línea................. 6.2

CAPITULO 5: INTEGRALES MÚLTIPLES Y APLICACIONES 5.1

'?

Integrales dobles

219

Funciones integrables................................................................

220

Propiedades fundamentales de la integral doble......................

221

( Vileu lo de integrales dobles por medio de integralesiteradas

224

<

228

'¡imhio de orden de integración..................................'

< .ilciilo de volúmenes de sólidos y áreas de regionesplanas por ink‘f‘1ación doble

234

6.4

317 320

Aplicaciones de la integral de línea

331

Trabajo.........................................................................................

332

Teorema de Green.................................:....................................

339

Parametrización de una superfice

349

Parametrización propia para subconjuntosde R3 ...................

352

Superficies regulares en IR3 .......................................................

352

Plano tangente y vector normal en un punto de una superficie 6.5 6.6

regular en M3 ...............................................................................

353

Área de una superficie

354

Integral de superficie

360

Teorema fundamental de la integralde superficie.....................

161

CAPITULO 7: SUCESIONES Y SERIES 7.1 Sucesiones

7.2

7.3

7.4 7.5 7.6

1 365

------

FUNCIONES VECTORIALES

Límite de una sucesión..............................................................

366

Propiedades de las sucesiones..................................................

368

Prueba de la razón para convergencia de sucesiones..............

370

Sucesiones divergentes..............................................................

375

Sucesiones monótonas y acotadas...........................................

375

Series infinitas de números reales

381

Propiedades de series infinitas.................................................

382

/ ( O = (ACO; / ¿ ( O ; - ; / nCO). t e i

Serie geométrica........................................................................

384

se denomina función vectorial de una variable real t.

Serie armónica de orden p .......................................................

388

Serie de términos positivos: Criterios de convergencia

389

Las n funciones reales función vectorial / .

Criterio de acotación..................................................................

389

Criterio de comparación............................................................

390

Criterio del cociente....................................................................

396

Criterio de la raíz........................................................................

398

Criterio de la integral...................................................................

399

Criterio de Raabe........................................................................

401

Series alternadas

405

Criterio de la razón absoluta.......................................................

409

Series de potencias

413

Solución

Operaciones con series de potencias..........................................

421

a) Si / i ( t ) = t 2, f 2{t) = ln(t - 2) y / 3(t) = V4 - t , entonces

Series de Taylor y Maclaurin

425

1.1 FUNCIONES VECTORIALES DE UNA VARIABLE REAL Definición 1. Una función / : / c l ^ R n cuya regla de correspondencia es

, (i = 1,2,..., n) se llaman funciones componentes de la

El dominio de la función vectorial / es el conjunto Dí = Dh 0 Dh 0 - Dfn donde Df . es el dominio de la función componente f t , (i = 1,2,..., n) Ejemplo 1. Halle el dominio de las siguientes funciones vectoriales:

a) /CO = ( t 2: InCt - 2); V4 - t)

b) g(t) =

^ _ L _ ; ln (l - í) j

Da = R , Dh = 0 j) /(t) = ( Y T t ^ ' l T t 3 k) / (t) = (3 sen t; 5 cos t ; 7), £ e [0; 27rj 2.- Determinar el punto de intersección de la recta f ( t ) = (9 -i- 31; - 1 0 —4t; 7 + 2t) con el plano YZ.

b) Una parametrización natural de esta curva es elegir x = t. De donde, y = t 2 —4t 4- 7 Por tanto, la función vectorial que representa a la curva es g ( t ) = (t; t 2 - 4 t 4-7),

t G1

Ejemplo 5. Halle una función vectorial que represente a ia curva de intersección de las siguientes superficies. a) x 2 4- y 2 = 16 y z = x y

b) z = 16x2 + 9 y 2 y y = x 2

Solución a) Una manera natural de parametrizar la curva de intersección de ias superficies es elegir x = 4 eos t y y = 4 sen £. Entonces z = 16 eos t sen t Luego, la función vectorial que representa a la curva de intersección de las superficies es / ( O = (4 eos t ; 4 s e n t; 16 eos t sen t), t E R 6

3.- Encuentre una representación paramétrica de las siguientes curvas a) x 2 + y 2 = 9, z = 0 R. a ( t) = (3 cos t ; 3 sen t; 0) b) x 2 4- y 2 6 x - 4y + 12 = 0, z = 0 c) y = 3x2, z = 0 d) (x - l ) 2 4- 4 (y - 2) 2 = 4, z = 0 R. a ( t) = (1 4- 2 cos t ; 2 4- sen t; 0) 4.- Sean / ( t ) = ( t 2 4-1; 0; £3) y ^ ( t) = (sen t; - c o s í; 0). Halle a) / ( a + ¿) b) g ( t — 3) c) / ( s e n ¿) x # ( t 2 4-1) 5.- Defina una función vectorial del intervalo [a; b] sobre el segmento de recta de extremos P0 y de íRn. 6.- Defina una función del intervalo [-2; 2] en E 3 cuya imagen sea el triángulo de vértices (3; 2; —1), ( 2; 0 ; 1) y ( 1; —2; 1)

7

CALCULO III

FUNCIONES VECTORIALES

r*f d) l i m /( t ) = [ lim(2 - t ) tan(2t}; lim 56” ; lim — - - - ) = ( e 2/7t; l ; i ) t-1 V*-1 «-i t a n ( V F ^ l) w t - 1 ) \ 2)

7.- Sean / ( t ) = (2 1-1; V 4 - t 2), ^ ( t) = (ln (t + 1); V i2 + 2t - 8) Calcule f + g, f • g, f x g, 4 / —2g , y sus dominios de definición. 1.2 LÍM ITE DE UNA FUNCIÓN VECTORIAL

PROPIEDADES OPERACIONALES VECTORIALES

Definición 3. Sea / : E -> E n una función vectorial dada por

DE

LÍM ITE

DE

FUNCIONES

Sean f , g : E -> E n funciones vectoriales de una variable real tales que

/ ( O = ( / i ( 0 ; / 2( 0 ; - ; / „ ( t ) ) . £ e K

y sea t0 un número real cualquiera. Entonces

lim / ( t ) = b = (b^,

lim / ( t ) = (lim A ( t ) ;...; lim f n( t )) t->t0 U-»to /

y lim # (t) = a = (a ^ ...;a n)

y sea E una función real tal que lim (p{t) = cr, entonces t->t0

siempre que existan lim /¿ (t), i = 1,2, ...,n

i) lim [ / ( t ) + ^r(t)] = lim / ( t ) + lim g ( t ) = b + á t-*t0

ii) lim [ / ( t ) - (j(t)] = lim / ( t ) - lim # (t) - b - á

Ejemplo 6. Calcule lim /(£ ) (en caso exista) de las siguientes funciones t-»t0 vectoriales ^ _|_ 1 £

t->t o

t-»t0

iü) Hm [^ ( t) 5 (t)] t-»to

t» = 0

= ( l™ t o

b) / ( O =

In t

t - 1 :Í - £ :

sen (t - 1) y

t - 1

v)

~~

—cosiesen eos(sen í) eos (sen t) I1 ~ t) eos t - cosisen

11 \

\í-*to

/

lim [ / ( t ) x ^ (t)] = ( lim / ( t ) ) x ( lim ^ ( t ) ) = b x a (solo en IR3) \t-*t o

t~*t0

/

\t-*t0

/I

4- eos t 1

\

eos í

/

# ( t ) = ( ------------- ; ------- ;5 en t + í

ta n (v T ^ T )

V sen i

t - 1

funciones vectoriales con imagen en el espacio R3. Halle:

Solución , ,, , a) h m / ( t ) t-+o

/

(sen t 1 \ Ejem plo?. S e a n / C O ^ ^ —~— ; eos t ; - - j y

C) / ( O = V----------s e nt2t;------------------- t7T 2 1------- ^ 7t — + nJ ' *o = 0

V

bȇ

/

í, 1 “ Vt + 1 t \ = lim -------------------------------------------— ; lim -- ; l i m 2 = \£->0 1 4* 2 t-*o 1 4" 1 t-*o J

.. , ^ / e t —e ln t sen (t — 1 )\ b) h m / ( t ) = li m - — —; lim -— - ; l i m — -— = (e ;- l;l) t-*o \t->i t - 1 M l - t m r-l y v 7 .. , ' /,. l - c o s ( s e n í ) , eos t - eos (sen t) 1 \ c) l i m / ( t ) = lim ---------- V -----lim --------------- ^ -------- ; l i m ------t-*n \t-> o s e n 2t t-»o t2 t^ot + n)

-(X )

...


Similar Free PDFs