Apunts Sscmob copy PDF

Title Apunts Sscmob copy
Author Hamza Errahmouni
Course Wireless and Mobile Communications
Institution Universitat Politècnica de Catalunya
Pages 33
File Size 983.1 KB
File Type PDF
Total Downloads 70
Total Views 140

Summary

Download Apunts Sscmob copy PDF


Description

Sistema Telefónico Móvil Avanzado El Sistema Telefónico Móvil Avanzado o AMPS (del inglés Advanced Mobile Phone System ) es un sistema de telefonía móvil de primera generación (1G, voz analógica) desarrollado por los laboratorios Bell. Se implementó por primera vez en 1983 en Estados Unidos.123 Se llegó a implantar también en Inglaterra y en Japón, con los nombres TACS y MCS-L1 respectivamente.4 Funcionamiento AMPS y los sistemas telefónicos móviles del mismo tipo dividen el espacio geográfico en una red de celdas o simplemente celdas (en inglés cells, de ahí el nombre de telefonía celular), y utilizando un diverso número de frecuencias para las diferentes comunicaciones (FDMA) Se establecían "grupos de canales (o frecuencias)" de tal forma que las celdas adyacentes nunca compartan las mismas frecuencias, para evitar interferencias.5 Celdas suficientemente lejanas entre sí podían reutilizar canales, en ese caso ya no habría interferencia por la atenuación dada por la distancia entre celdas. Para poder establecerse la comunicación entre usuarios que ocupan distintas celdas se interconectan todas las estaciones base a un MTSO (Mobile Telephone Switching Office), también llamado MSC (Mobile Switching Center). A partir de allí se establece una jerarquía como la del sistema telefónico ordinario.6 El MTSO o MSC se ocupaba no sólo de encaminar la llamada a una celda específica (en cuya área de cobertura se ubicaba el destinatario de la llamada) sino también de "perseguir" a dicho destinatario a través de las diferentes celdas para que la llamada no se interrumpa (ver handoff más abajo). Problemas El uso de sistemas celulares da algunos problemas, como los que se plantean si el usuario cambia de celda mientras está hablando. AMPS prevé esto y logra mantener la comunicación activa, siempre y cuando haya canales disponibles en la celda en la que se entra. Esta transferencia de celda (en inglés denominada handoff) se basa en analizar la potencia de la señal emitida por el móvil y recibida en las distintas estaciones base; y es coordinada por la MTSO en un trabajo continuo. Depende del modo en el que se haga puede cortarse la comunicación unos 300 ms para reanudarse inmediatamente después, o puede ser completamente inapreciable para el usuario.5 AMPS usa 832 canales dobles, formados por 832 simples de bajada y otros 832 simples de subida, cada uno de ellos con un ancho de banda de 30kHz, frente a los 200kHz de sistemas como GSM. La banda de frecuencias usada va de 824 a 849 MHz para los canales de transmisión y de 869 a 894 MHz para los canales de recepción. No todos los canales se usan para comunicación de los usuarios, sino que algunos canales son destinados a control, a asignación de canales de conversación y para alertar de llamadas entrantes. AMPS pertenece a la primera generación de telefonía móvil con una característica muy importante: la capacidad de alternar entre radiobases en zonas distantes sin perder la conexión.6 Uso actual AMPS terminó reemplazado por los sistemas digitales tales como GSM y D-AMPS (que no es más que AMPS en digital), pero es un sistema de importancia histórica capital para el desarrollo de las comunicaciones móviles por el éxito obtenido y por las ideas novedosas que aportó. Actualmente muchas operadoras todavía la usan como tecnología de respaldo, ya que a igual número de celdas cubría más territorio que las digitales TDMA, GSM y CDMA, sin embargo, al ser un sistema análogico, AMPS no es compatible con servicio de mensajería corta de texto ni ningún tipo de datos.7 Se intentó en algún momento implementar CDPD para transmisión de datos (en los canales no utilizados para comunicaciones de voz), sin embargo, con la proliferación de nuevas tecnologías como GPRS a mediados de los 90, que podía transmitir datos a una velocidad superior y menor costo, CDPD ha caído en desuso. Las operadoras fueron dando de baja sus redes AMPS: Telcel de México por ejemplo, tiene una red AMPS compartida con una TDMA de 800 MHz y GSM en 1900 MHz (PCS). Movilnet de Venezuela utilizó CDMA2000 y TDMA en conjunto. Este último fue apagado y se está realizando una inversión para implantar una red GSM en 850 y 1900 MHz en el año 2008. Verizon Communications en República Dominicana la descartó migrando a CDMA2000 en 1900 MHz para dejarla en desuso. Movicom en Argentina fue pionera en la utilización de esta tecnología desde 1989, ampliando su red a otros sistemas con el avance de los nuevos desarrollos en telefonía celular. -Telefonía Móvil Nórdica

Ir a la navegaciónIr a la búsqueda NMT (Nordisk MobilTelefoni o Nordiska MobilTelefoni-gruppen, Telefonía Móvil Nórdica en español) es un sistema de telefonía móvil definido por las autoridades de telecomunicaciones escandinavas. Historia El servicio fue especificado hacia 1970 y entró en servicio en 1981. Las razones de su desarrollo se encuentran en los problemas de congestión de las redes de telefonía móvil existentes: ARP (150 MHz) en Finlandia y MTD (450 MHz) en Suecia, Noruega y Dinamarca. NMT es una tecnología analógica, y según la frecuencia, existen dos variantes: NMT-450 y NMT900. Los números indican las frecuencias utilizadas. La norma NMT-900 fue introducida en 1986 porque podía utilizar más canales (y por lo tanto transportar más llamadas) que la norma 450. Los principios técnicos de NMT estaban listos hacia 1973, y las especificaciones de las estaciones de base, hacia 1977. Las especificaciones eran gratuitas y abiertas, permitiendo a todas las compañías que lo desearan, producir equipo NMT y bajar los precios. El éxito de NMT significó para Mobira (el ancestro de Nokia) y Ericsson su despegue como compañías de la rama telecomunicaciones. Al principio, los teléfonos NMT eran típicos de su época: eran transportables pero no portables; su utilización natural era a bordo de autos. Sin embargo, los modelos más recientes, como los de Benefon, eran tan pequeños que pesaban solamente 100g y medían apenas 100mm La red fue inaugurada en Suecia y Noruega en 1981, y en Dinamarca y Finlandia en 1982. Islandia se les unió en 1986. Desde entonces, la red NMT ha sido usada además de Escandinavia, en Suiza, Holanda, Hungría, Eslovenia, Croacia, Bosnia, los países bálticos, y Rusia; pero también en Oriente Medio y Asia. La introducción de redes digitales como GSM ha significado el ocaso de NMT, que ha sido cerrado en algunos países. Sin embargo, sigue en servicio en otros, a causa de sus propiedades de propagación superiores a las del GSM; en efecto, cuanto más baja la frecuencia, menos atenuación sufre la onda radioeléctrica. Por esa razón, sigue en servicio en países poco poblados pero de gran extensión como Islandia, donde aun cuando el 98% de la población usa la norma GSM, NMT sigue funcionando para quienes necesitan servicio en zonas poco pobladas, como los pescadores y los montañeses. Tecnología Las celdas de las redes NMT son de igual o mayor tamaño que las del GSM: de 2 a 30 km, en vez de cinco. Cuanto menor la celda, más usuarios pueden ser atendidos, lo que hace que algunas celdas sean voluntariamente pequeñas en zonas densamente pobladas. NMT es un sistema full-dúplex, por lo que es posible transmitir y recibir al mismo tiempo. Las versiones para automóvil usan potencias de 15 watts (NMT-450) o bien 6 watts (NMT-900); los teléfonos portátiles son de hasta 1 watt. NMT tenía algunas propiedades modernas para su época, como el discado automático y el handover (pasaje automático de una estación de base a otra sin intervención del usuario). Por otro lado, NMT especificaba la facturación y permitía usar las redes de otros operadores en el extranjero (roaming). NMT no tenía cifrado de las comunicaciones, lo que era una desventaja; cualquier persona equipada de un escáner podía escuchar las conversaciones de los clientes. Se inventó entonces un sistema de interferencia analógica que sólo unos decodificadores especiales, utilizados de común acuerdo entre ambas partes, podía eliminar. NMT también permitía transferir datos, en un modo llamado DMS (Data and Messaging Service); o bien NMT-Text, que usaba el canal de señalización (digital) para transferir datos. Es el ancestro del SMS. Las velocidades iban entre 600 y 1200 bits por segundo, utilizando la modulación FFSK. Otro método de transferencia de datos, el NMT Mobidigi, permitía velocidades de transferencia de 380 bits por segundo y necesitaba equipo externo.

-Enhanced Data Rates for GSM Evolution Enhanced Data rates for GSM Evolution (EDGE) (also known as Enhanced GPRS (EGPRS), IMT Single Carrier (IMT-SC), or Enhanced Data rates for Global Evolution) is a digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM. EDGE is considered a pre-3G radio technology and is part of ITU's 3G definition.[1] EDGE was deployed on GSM networks beginning in 2003 – initially by Cingular (now AT&T) in the United States.[2] EDGE is standardized also by 3GPP as part of the GSM family. A variant, so called Compact-EDGE, was developed for use in a portion of Digital AMPS network spectrum.[3] Through the introduction of sophisticated methods of coding and transmitting data, EDGE delivers higher bit-rates per radio channel, resulting in a threefold increase in capacity and performance compared with an ordinary GSM/GPRS connection. EDGE can be used for any packet switched application, such as an Internet connection. Evolved EDGE continues in Release 7 of the 3GPP standard providing reduced latency and more than doubled performance e.g. to complement High-Speed Packet Access (HSPA). Peak bit-rates of up to 1 Mbit/s and typical bit-rates of 400 kbit/s can be expected. Technology EDGE/EGPRS is implemented as a bolt-on enhancement for 2.5G GSM/GPRS networks, making it easier for existing GSM carriers to upgrade to it. EDGE is a superset to GPRS and can function on any network with GPRS deployed on it, provided the carrier implements the necessary upgrade. EDGE requires no hardware or software changes to be made in GSM core networks. EDGEcompatible transceiver units must be installed and the base station subsystem needs to be upgraded to support EDGE. If the operator already has this in place, which is often the case today, the network can be upgraded to EDGE by activating an optional software feature. Today EDGE is supported by all major chip vendors for both GSM and WCDMA/HSPA. Transmission techniques In addition to Gaussian minimum-shift keying (GMSK), EDGE uses higher-order PSK/8 phase shift keying (8PSK) for the upper five of its nine modulation and coding schemes. EDGE produces a 3-bit word for every change in carrier phase. This effectively triples the gross data rate offered by GSM. EDGE, like GPRS, uses a rate adaptation algorithm that adapts the modulation and coding scheme (MCS) according to the quality of the radio channel, and thus the bit rate and robustness of data transmission. It introduces a new technology not found in GPRS, Incremental Redundancy, which, instead of retransmitting disturbed packets, sends more redundancy information to be combined in the receiver. This increases the probability of correct decoding. EDGE can carry a bandwidth up to 236 kbit/s (with end-to-end latency of less than 150 ms) for 4 timeslots (theoretical maximum is 473.6 kbit/s for 8 timeslots) in packet mode. This means it can handle four times as much traffic as standard GPRS. EDGE meets the International Telecommunications Union's requirement for a 3G network, and has been accepted by the ITU as part of the IMT-2000 family of 3G standards.[1] It also enhances the circuit data mode called HSCSD, increasing the data rate of this service. EDGE modulation and coding scheme (MCS) The channel encoding process in GPRS as well as EGPRS/EDGE consists of two steps: first, a cyclic code is used to add parity bits, which are also referred to as the Block Check Sequence, followed by coding with a possibly punctured convolutional code.[4] In GPRS, the Coding Schemes CS-1 to CS-4 specify the number of parity bits generated by the cyclic code and the puncturing rate of the convolutional code.[4] In GPRS Coding Schemes CS-1 through CS-3, the convolutional code is of rate 1/2, i.e. each input bit is converted into two coded bits.[4] In Coding Schemes CS-2 and CS-3, the output of the convolutional code is punctured to achieve the desired code rate.[4] In GPRS Coding Scheme CS-4, no convolutional coding is applied.[4] In EGPRS/EDGE, the Modulation and Coding Schemes MCS-1 to MCS-9 take the place of the Coding Schemes of GPRS, and additionally specify which modulation scheme is used, GMSK or 8PSK.[4] MCS-1 through MCS-4 use GMSK and have performance similar (but not equal) to GPRS, while MCS5 through MCS-9 use 8PSK.[4] In all EGPRS Modulation and Coding Schemes, a convolutional code of rate 1/3 is used, and puncturing is used to achieve the desired code rate.[4] In contrast to GPRS, the Radio Link Control (RLC) and Media Access Control (MAC) headers and the payload data are coded separately in EGPRS.[4] The headers are coded more robustly than the data. Evolved EDGE

Evolved EDGE, also called EDGE Evolution, is a bolt-on extension to the GSM mobile telephony standard, which improves on EDGE in a number of ways. Latencies are reduced by lowering the Transmission Time Interval by half (from 20 ms to 10 ms). Bit rates are increased up to 1 Mbit/s peak bandwidth and latencies down to 80 ms using dual carrier, higher symbol rate and higherorder modulation (32QAM and 16QAM instead of 8PSK), and turbo codes to improve error correction. This results in real world downlink speeds of up to 600kbit/s.[7] Further the signal quality is improved using dual antennas improving average bit-rates and spectrum efficiency. The main intention of increasing the existing EDGE throughput is that many operators would like to upgrade their existing infrastructure rather than invest on new network infrastructure. Mobile operators have invested billions in GSM networks, many of which are already capable of supporting EDGE data speeds up to 236.8 kbit/s. With a software upgrade and a new device compliant with Evolved EDGE (like an Evolved EDGE smartphone) for the user, these data rates can be boosted to speeds approaching 1 Mbit/s (i.e. 98.6 kbit/s per timeslot for 32QAM). Many service providers may not invest in a completely new technology like 3G networks.[8] Considerable research and development happened throughout the world for this new technology. A successful trial by Nokia Siemens and "one of China's leading operators" has been achieved in a live environment.[8] With the introduction for more advanced wireless technologies like UMTS and LTE, which also focus on a network coverage layer on low frequencies and the upcoming phase-out and shutdown of 2G mobile networks, it is very unlikely that Evolved EDGE will ever see any deployment on live networks. Up to now (as of 2016) there are no commercial networks which support the Evolved EDGE standard (3GPP Rel-7). Technology Reduced Latency With Evolved EDGE come three major features designed to reduce latency over the air interface. In EDGE, a single RLC data block (ranging from 23 to 148 bytes of data) is transmitted over four frames, using a single time slot. On average, this requires 20 ms for one way transmission. Under the RTTI scheme, one data block is transmitted over two frames in two timeslots, reducing the latency of the air interface to 10 ms. In addition, Reduced Latency also implies support of Piggy-backed ACK/NACK (PAN), in which a bitmap of blocks not received is included in normal data blocks. Using the PAN field, the receiver may report missing data blocks immediately, rather than waiting to send a dedicated PAN message. A final enhancement is RLC-non persistent mode. With EDGE, the RLC interface could operate in either acknowledged mode, or unacknowledged mode. In unacknowledged mode, there is no retransmission of missing data blocks, so a single corrupt block would cause an entire upper-layer IP packet to be lost. With non-persistent mode, an RLC data block may be retransmitted if it is less than a certain age. Once this time expires, it is considered lost, and subsequent data blocks may then be forwarded to upper layers. Downlink Dual Carrier With Downlink Dual Carrier, the handheld is able to receive on two different frequency channels at the same time, doubling the downlink throughput. In addition, if second receiver is present then the handheld is able to receive on an additional timeslot in single-carrier mode, because it may overlap the tuning of one receiver with other tasks. Higher Modulation Schemes Both uplink and downlink throughput is improved by using 16 or 32 QAM (Quadrature Amplitude Modulation), along with turbo codes and higher symbol rates. Networks The Global mobile Suppliers Association (GSA) states that,[9] as of May 2013, there were 604 GSM/EDGE networks in 213 countries, from a total of 606 mobile network operator commitments in 213 countries. -Digital AMPS Ir a la navegaciónIr a la búsqueda IS-54 e IS-136 son sistemas de telefonía móvil de segunda generación (2G), conocidos como Digital AMPS (D-AMPS). Alguna vez fue predominante en América, particularmente en los Estados Unidos y Canadá. D-AMPS está considerado en etapa de desimplementación, y las redes existentes han sido reemplazadas en su mayoría por las tecnologías GSM/GPRS o CDMA2000.

Aunque este sistema es referido más comúnmente como TDMA, este nombre está basado en el acrónimo en inglés de acceso múltiple por división de tiempo (time division multiple access), una técnica común de acceso múltiple que es usada por múltiples protocolos, incluyendo GSM, así como en IS-54 e IS-136. Sin embargo, D-AMPS ha competido contra GSM y sistemas basados en acceso múltiple por división de código o code division multiple access (CDMA). D-AMPS usa canales AMPS existentes y permite una transición suave entre sistemas digitales y analógicos en la misma área. La capacidad se incrementó sobre el diseño analógico precedente al dividir cada par de canal de 30kHz en tres ranuras de tiempo y comprimiendo digitalmente los datos de voz, consiguiendo el triple de capacidad de llamadas en la misma célula. Un sistema digital también hace las llamadas más seguras pues los escáneres analógicos no pueden acceder a señales digitales. Se usó el algoritmo de cifrado CMEA, que posteriormente se encontró que era débil [1]. IS-136 agrega algunas características a la especificación original IS-54, incluyendo SMS (Short message service), que son mensajes de texto, datos por conmutación de circuitos, (CSD), y un protocolo de compresión mejorado. Tanto SMS como CSD están disponibles como parte del protocolo GSM, así que IS-136 los implementó de una manera casi idéntica. Las primeras grandes redes IS-136 incluían AT&T en los Estados Unidos, y Rogers Wireless en Canadá. AT&T y Rogers Wireless ya han cambiado sus redes IS-136 existentes a GSM/GPRS. Rogers Wireless quitó toda la red IS-136 1900 MHz en 2003, e hizo lo mismo con su espectro de 800 MHz, pues el equipo falló. Rogers desactivó su red IS-136 (junto con AMPS) el 31 de mayo de 2007. AT&T pronto hizo lo mismo en febrero de 2008, apagando TDMA y AMPS. IS-54 es el primer sistema de comunicaciones móviles que da un mecanismo de seguridad, y es el primero en emplear la tecnología TDMA Especificaciones técnicas IS-54 emplea el mismo espaciado de canales de 30kHz y las bandas de frecuencia (824-849 y 869894 MHz) como lo hace AMPS. La capacidad se incrementó sobre el diseño analógico anterior dividiendo cada par de canales de 30 kHz en tres ranuras de tiempo y comprimiendo digitalmente los datos de voz, consiguiendo tres veces la capacidad de llamadas en una misma célula. Un sistema digital también hace las llamadas más seguras porque los escáneres analógicos ya no son capaces de acceder a señales digitales. El estándar IS-54 especifica 84 canales de control, 42 de los cuales son compartidos con AMPS. Para mantener la compatibilidad con el sistema de telefonía celular AMPS, los canales de control primarios de subida y de bajada en los sistemas celulares usan las mismas técnicas de señalización y esquema de modulación (FSK binario) que AMPS. Una infraestructura AMPS/IS-54 soporta el uso de teléfonos análogos y digitales. El método de acceso usado por IS-54 es TDMA, que fue el primer estándar digital de los Estados...


Similar Free PDFs