Ejercicios de trifásica resueltos paso a paso PDF

Title Ejercicios de trifásica resueltos paso a paso
Course Electrotecnia
Institution Universidad Carlos III de Madrid
Pages 23
File Size 1.4 MB
File Type PDF
Total Downloads 90
Total Views 148

Summary

Ejercicios de trifásica resueltos paso a paso...


Description

PROBLEMAS DE CORRIENTE TRIFÁSICA PROBLEMA 1:

Siendo un circuito trifásico equilibrado conectado en estrella, basta con calcular la corriente de una rama y considerar luego los respectivos desfases de 120º. Considerando la rama de la fase a, el circuito que se estudiará es:

1

100 0º 3

5

100 0º 4 6

100 0º 7, 21 56, 31º

13,87 56,31º

Y por tanto:

13,87 56,31º 120º

13,87 176,31º

13,87 56,31º 120º

13, 87 63, 69º

PROBLEMA 2:

1) Considerando que

220

127

entonces el circuito monofásico equivalente para la fase a es:

3

Que equivale a una impedancia en serie con el equivalente de dos impedancias en paralelo:

1 1

30

10 20

30

10

14

2

20 15

31,62 18,43º 22,36 26,57º

10 10

1

50

1

14,14 8,14º

3 15, 297 11, 31º

127 0º 15, 297 11,31º

8,30 11,31º

8,30 11,31 120 8,30 131,31º 8,30 11,31 120 8,30 108,69º (Estos valores no corresponden a los propuestos, sin embargo están validados en simulador)

2) Como ambas cargas están conectadas en paralelo en cada fase, entonces tienen la misma tensión de fase. Fase a:

'

//

8,30 11,31º 14,14 8,14º

Fase b:

'

//

8,30 131,31º 14,14 8,14º

Fase c:

'

//

8, 30 108, 69º 14,14 8,14º

117,36 3,17º 117,36 123,17º 117, 36 116,83º

(Estos valores no corresponden a los propuestos, sin embargo están validados en simulador) 3) Del enunciado:

1

30

10

31, 62 18, 43º

' 1 1

117,36 3,17º

2

20

10

22,36 26,57º

3, 7115, 26º

31, 62 18, 43º 117,36 123,17º

' 1

31, 62 18, 43º

1

3, 71 104,74º

117,36 116,83º

' 1

31, 62 18, 43º

1

' 2 2

117,36 3,17º 5, 25 29, 74º 22,36 26,57º 117,36 123,17º 22,36 26,57º

' 2 2

' 2 2

3, 71135, 26º

5, 25 149, 74º

117,36 116,83º 5, 25 90, 26º 22,36 26,57º

(Estos valores no corresponden a los propuestos, sin embargo están validados en simulador)

4) - Potencia aparente en la carga 1 en la fase a: 1

'

1

117, 36 3,17º 3, 7115, 26º

Potencia activa en la carga 1 en la fase a:

435, 40 12, 09º 1

425, 74

425, 74

Como es una carga equilibrada, entonces la potencia activa total de la carga

3

1

1

1

91,19

Como es una carga equilibrada, entonces la potencia reactiva total de la carga

3

2

es:

3 425, 74 1277, 22

1

Potencia reactiva en la carga 1 en la fase a:

1

91,19

1

3 91,19

1

es:

273,57

Potencia aparente en la carga 2 en la fase a: '

2

117, 36 3,17º 5, 25 29, 74º

Potencia activa en la carga 2 en la fase a:

616,14 32, 91º 2

517, 26

517, 26

Como es una carga equilibrada, entonces la potencia activa total de la carga

3

2

2

2

2

es:

334, 76

Como es una carga equilibrada, entonces la potencia reactiva total de la carga

3

2

3 517, 26 1551, 78

Potencia reactiva en la carga 2 en la fase a:

2

334, 76

2

es:

3 334, 76 1004, 28

(Estos valores no corresponden a los propuestos, sin embargo están validados en simulador)

5) La bobina amperimétrica del vatímetro, se pone en serie con la fase a’, en tanto que la bobina de la parte del voltímetro, se conecta entre las fases b’ y c’:

En el instrumento se leería

334, 76 1004, 28 3

386,55

que es proporcional a la potencia

reactiva consumida por todas las cargas.

6)

3

La potencia activa perdida en la línea es:

3

La potencia reactiva perdida en la línea es:

2

3 1 8,30 2 2

206, 67

3 1 8,30 2

206, 67

7)

cos ' 1 ⇒

' 0 ⇒

'

'

'

Igualando y despejando:

3

2

2

3

Al estar los condensadores conectados en triángulo, entonces:

425, 74 517, 26

8,14º 2

3 2 50 117, 36

10, 4

8) Aplicando los mismos criterios para el caso en que haya que conectar los condensadores en estrella, se tiene:

'   3    3

2

425, 74 517, 26

8,14º

 117,36  3 2 50   3  

2

31, 2

PROBLEMA 3:

1) La estrategia de solución consistirá en convertir los generadores conectados en triángulo a su equivalente en estrella y las cargas conectadas en triángulo, también se convertirán a su equivalente en estrella. De esta manera se podrán hacer los cálculos con el circuito monofásico equivalente:

El diagrama vectorial a tomar en cuenta es:

Entonces la intensidad de línea es:

240 30º 3 3 4

240 30º 3 5 53,13º

27, 71 83,13º

Por lo tanto en el circuito monofásico equivalente:

 2 8  27, 71 83,13º   3  

27, 71 83,13º 2, 75 75, 96º

76, 20 7,17º

La tensión fase neutro en el borne del generador equivalente entonces es:

2 75, 60

27, 71 83,13º 9, 51 34, 20

75, 60

51, 80 109,80

9, 51

62, 07 56, 56º

61, 31 125, 76 30, 49º

Ya es posible obtener las corrientes de fase del circuito original, teniendo en cuenta el diagrama vectorial:

2) Las tensiones de línea en la carga, que son las mismas que las de fase, corresponden en magnitud a las encontradas entre fase y neutro pero

3 superior y con el desfase

correspondiente:

3) La potencia aparente generada se calcula en el equivalente monofásico:

3

* 3 125, 76 30, 49º 27, 7183,13º 6152

Entonces:

y

10454 52, 64º

6152

8452

8452

Considerando el generador ideal:

3 138, 56 30º 27, 71 83,13º Entonces:

6910

6910

y

9214

9214

4) Se pueden calcular las potencias activas y reactivas en todas las impedancias del circuito:

5) Se cumple el Teorema de Boucherot (dentro del error de redondeo propio del cálculo numérico) ya que: En las potencias activas:

768 + 4.607 + 1.536 = 6.911 W

En las potencias reactivas:

768 + 2.304 + 6.144 = 9.216 VAR

6) Se tendría:

Tal y como están conectados los vatímetros, la lectura de los instrumentos es:

Pudiendo entonces calcular las potencias activas y reactivas:

PROBLEMA 4: 1) Primero se calcula la intensidad de línea:

Se hace el cálculo de la impedancia en estrella:

El circuito equivalente es:

Al conectarse en triángulo quedan:

La intensidad de corriente que circula por cada impedancia es: Y la potencia en cada impedancia es:

200 18, 74 10, 67

2) Al conectar la carga en triángulo, entonces:

Esto implica que la intensidad de línea es:

PROBLEMA 5:

a) Estando el circuito equilibrado, la lectura del primer vatímetro viene dada por:

Que al ser una lectura positiva indica una potencia reactiva inductiva. El segundo vatímetro permite conocer la tercera parte de la potencia consumida por la carga:

Conociendo P y Q es posible calcular el factor de potencia pedido:

b) La intensidad de corriente se puede calcular a partir de la potencia aparente:

Entonces el módulo de la impedancia es:

Considerando su fase:

c) Al abrir el interruptor K se rompe el equilibrio del sistema trifásico y es necesario aplicar las técnicas habituales de análisis de circuitos. Por divisor de tensión:

Aplicando la segunda Ley de Kirchhoff a la malla b-N-c se obtiene:

Pudiendo calcular

Es posible a partir de estos cálculos, construir el siguiente diagrama vectorial:

Pudiendo calcular directamente las lecturas de los instrumentos:

PROBLEMA 6:

1) En un sistema trifásico equilibrado:

2) El vatímetro está conectado de manera que indica la potencia reactiva:

También se puede calcular la potencia aparente:

Y por lo tanto, se puede también calcular P:

Y de estos resultados, se puede obtener el factor de potencia:

Que junto al módulo de la impedancia: Permite finalmente efectuar el cálculo de la impedancia:

3) Para el cálculo del condensador, se igualan estas dos expresiones de potencia reactiva:

Resultando:

4) La intensidad de corriente de línea con los condensadores conectados es:

PROBLEMA 7:

a) El circuito equivalente monofásico fase neutro es:

Se observa que

está en serie con

2

y la impedancia resultante en paralelo con

Calculando la potencia activa se puede despejar la intensidad de línea del generador:

1

b) Aplicando un divisor de corriente:

Cálculo de pérdidas de potencia activa en la línea:

Cálculo de pérdidas de potencia reactiva en la línea:

c) En el circuito monofásico equivalente, se calcula la tensión en la carga 1:

Y luego en la carga 2:

Ahora se puede calcular la tensión de línea en las cargas:

PROBLEMA 8:

1) El circuito equivalente monofásico fase neutro es:

El voltaje de referencia será la tensión monofásica en la carga, entonces:

Siendo ésta la corriente de línea, la corriente de fase es:

2) La potencia activa consumida en la carga es:

La potencia reactiva consumida en la carga es:

3) La tensión fase neutro en el generador, se calculará aplicando la segunda Ley de Kirchhoff al circuito equivalente monofásico:

Pudiendo con facilidad ahora, calcular la tensión de línea que se pide:

4) Las potencias activa y reactiva generadas, serán iguales a las consumidas por la carga y la línea Potencia activa:

Potencia reactiva:

5) Para el cálculo de la capacidad de una batería de condensadores conectados en triángulo, se emplea la fórmula:

Como

Entonces:

PREGUNTA 9:

a) Se tiene que

La lectura del vatímetro corresponde a la potencia reactiva entregada por el generador y consumida por la línea y las cargas:

De donde

30º por lo tanto:

Nótese que la línea es puramente inductiva, por lo que la potencia activa entregada por eg generador, se traspasa íntegramente a la carga. Entonces el factor de potencia es:

Y la impedancia:

b) Potencia reactiva consumida por la carga:

La potencia reactiva que consuma la línea, se obtiene por diferencia entre la potencia reactiva que entrega el generador y la que consume la carga:

Ya se puede calcular la reactancia de la línea:

c) Un factor de potencia igual a la unidad, implica que los condensadores compensan totalmente el efecto inductivo de la carga y que el generador sólo verá cargas resistivas de Aplicando la fórmula:

d) La resistencia en estrella equivalente es: La intensidad de la línea que leerá el amperímetro es:

En la carga, la tensión fase neutro es:

Y la tensión de línea medida por el voltímetro V2 es:

La lectura del vatímetro W1, debido al efecto de los condensadores, será proporcional sólo a la potencia reactiva de la línea.

PROBLEMA 10:

a) La potencia aparente del sistema total es:

Por lo tanto:

b) El factor de potencia es:

c) Antes de conectar los condensadores:

Al conectar los condensadores, P no varía, pero sí el factor de potencia y la intensidad:

Igualando ambas expresiones, se calcula el nuevo factor de potencia:

Aplicando ahora la fórmula para el cálculo de C, se tiene:...


Similar Free PDFs